Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Kráľovič, Rastislav; Kučera, Antonín (Ed.)Given a set P of n points and a set S of n weighted disks in the plane, the disk coverage problem is to compute a subset of disks of smallest total weight such that the union of the disks in the subset covers all points of P. The problem is NP-hard. In this paper, we consider a line-separable unit-disk version of the problem where all disks have the same radius and their centers are separated from the points of P by a line 𝓁. We present an O(n^{3/2}log² n) time algorithm for the problem. This improves the previously best work of O(n²log n) time. Our result leads to an algorithm of O(n^{7/2}log² n) time for the halfplane coverage problem (i.e., using n weighted halfplanes to cover n points), an improvement over the previous O(n⁴log n) time solution. If all halfplanes are lower ones, our algorithm runs in O(n^{3/2}log² n) time, while the previous best algorithm takes O(n²log n) time. Using duality, the hitting set problems under the same settings can be solved with similar time complexities.more » « less
- 
            Kráľovič, Rastislav; Kučera, Antonín (Ed.)Given a set P of n points and a set S of m disks in the plane, the disk hitting set problem asks for a smallest subset of P such that every disk of S contains at least one point in the subset. The problem is NP-hard. This paper considers a line-constrained version in which all disks have their centers on a line. We present an O(mlog²n+(n+m)log(n+m)) time algorithm for the problem. This improves the previous result of O(m²log m+(n+m)log(n+m)) time for the weighted case of the problem where every point of P has a weight and the objective is to minimize the total weight of the hitting set. Our algorithm also solves a more general line-separable problem with a single intersection property: The points of P and the disk centers are separated by a line 𝓁 and the boundary of every two disks intersect at most once on the side of 𝓁 containing P.more » « less
- 
            Kráľovič, Rastislav; Kučera, Antonín (Ed.)We characterize the algorithmic dimensions (i.e., the lower and upper asymptotic densities of information) of infinite binary sequences in terms of the inability of learning functions having an algorithmic constraint to detect patterns in them. Our pattern detection criterion is a quantitative extension of the criterion that Zaffora Blando used to characterize the algorithmically random (i.e., Martin-Löf random) sequences. Our proof uses Lutz’s and Mayordomo’s respective characterizations of algorithmic dimension in terms of gales and Kolmogorov complexity.more » « less
- 
            Kráľovič, Rastislav; Kučera, Antonín (Ed.)In this paper we give several applications of Littlestone dimension. The first is to the model of [Angluin and Dohrn, 2017], where we extend their results for learning by equivalence queries with random counterexamples. Second, we extend that model to infinite concept classes with an additional source of randomness. Third, we give improved results on the relationship of Littlestone dimension to classes with extended d-compression schemes, proving the analog of a conjecture of [Floyd and Warmuth, 1995] for Littlestone dimension.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
